The ClC-7 Chloride Channel Is Downregulated by Hypoosmotic Stress in Human Chondrocytes.
نویسندگان
چکیده
Articular chondrocytes in osteoarthritis (OA) patients are exposed to hypoosmotic stress because the osmolality of this synovial fluid is significantly decreased. Hypoosmotic stress can cause an efflux of Cl(-) and an associated decrease of cell volume. We have previously reported that a Cl(-) conductance contributes to the regulation of resting membrane potential and thus can alter intracellular Ca(2+) concentration ([Ca(2+)]i) in human chondrocytes. The molecular identity and pathologic function of these Cl(-) channels, however, remained to be determined. Here, we show that the ClC-7 Cl(-) channel is strongly expressed in a human chondrocyte cell line (OUMS-27) and that it is responsible for Cl(-) currents that are activated by extracellular acidification (pH 5.0). These acid-sensitive currents are inhibited by 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS; IC50 = 13 μM) and are markedly reduced by small-interfering RNA-induced knockdown of ClC-7. DIDS hyperpolarized these chondrocytes, and this was followed by an increase in [Ca(2+)]i. ClC-7 knockdown caused a similar hyperpolarization of the membrane potential. Short-term culture (48 hours) in hypoosmotic medium (270 mOsm) reduced the expression of ClC-7 and decreased the acid-sensitive currents. Interestingly, these hypoosmotic culture conditions, or ClC-7 knockdown, resulted in enhanced cell death. Taken together, our results show that the significant hyperpolarization due to ClC-7 impairment in chondrocytes can significantly increase [Ca(2+)]i and cell death. Thus, downregulation of ClC-7 channels during the hypoosmotic stress that accompanies OA progression is one important concept of the complex etiology of OA. These findings suggest novel targets for therapeutic intervention(s) and drug development for OA.
منابع مشابه
Chloride channel protein 2 prevents glutamate-induced apoptosis in retinal ganglion cells
Objective(s): The purpose of this study was to investigate the role of chloride channel protein 2 (ClC-2) in glutamate-induced apoptosis in the retinal ganglion cell line (RGC-5). Materials and Methods: RGC-5 cells were treated with 1 mM glutamate for 24 hr. The expression of ClC-2, Bax, and Bcl-2 was detected by western blot analysis. Cell survival and apoptosis were measured by 3-(4,5-dimeth...
متن کاملClC-3 is a candidate of the channel proteins mediating acid-activated chloride currents in nasopharyngeal carcinoma cells.
Acid-activated chloride currents have been reported in several cell types and may play important roles in regulation of cell function. However, the molecular identities of the channels that mediate the currents are not defined. In this study, activation of the acid-induced chloride current and the possible candidates of the acid-activated chloride channel were investigated in human nasopharynge...
متن کاملSwelling-induced chloride currents in neuroblastoma cells are calcium dependent.
The effects of osmotic stress on chloride (CI-) currents in the human neuroblastoma cell line CHP-100 were evaluated. Following exposure to hypoosmotic solution, an increase in whole-cell CI- current was observed. This current was blocked by the CI- channel blocker 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB). In cells loaded with the CI- permeability marker 125I, exposure to hypoosmotic...
متن کاملChloride channel expression in cultured human fetal RPE cells: response to oxidative stress.
PURPOSE The human fetal cell line RPE 28 SV4 has been useful for studies of oxidative stress and apoptosis in retinal pigmented epithelium. This cell model is now assessed in functional investigations of chloride channel activity. The study aims to determine the presence of specific chloride channels, including CFTR and ClC channels, to identify the properties of membrane chloride currents and ...
متن کاملActivating mutation of the renal epithelial chloride channel ClC-Kb predisposing to hypertension.
The chloride channel ClC-Kb is expressed in the basolateral cell membrane of the distal nephron and participates in renal NaCl reabsorption. Loss-of-function mutations of ClC-Kb lead to classic Bartter syndrome, a rare salt-wasting disorder. Recently, we identified the ClC-Kb(T481S) polymorphism, which confers a strong gain-of-function effect on the ClC-Kb chloride channel. The present study ha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular pharmacology
دوره 88 1 شماره
صفحات -
تاریخ انتشار 2015